4.8 Article

M3C (M: Fe, Co, Ni) Nanocrystals Encased in Graphene Nanoribbons: An Active and Stable Bifunctional Electrocatalyst for Oxygen Reduction and Hydrogen Evolution Reactions

Journal

ACS NANO
Volume 9, Issue 7, Pages 7407-7418

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.5b02420

Keywords

oxygen reduction reaction (ORR); hydrogen evolution reaction (HER); vertically aligned graphene nanoribbons (VA-GNRs); M3C (M: Fe, Co, Ni); nanocrystals (NCs)

Funding

  1. China Scholarship Council

Ask authors/readers for more resources

Transition metal carbide nanocrystalline M3C (M: Fe, Co, Ni) encapsulated in graphitic shells supported with vertically aligned graphene nanoribbons (VA-GNRs) are synthesized through a hot filament chemical vapor deposition (HF-CVD) method. The process is based on the direct reaction between iron group metals (Fe, Co, Ni) and carbon source, which are facilely get high purity carbide nanocrystals (NCs) and avoid any other impurity at relatively low temperature. The M3C-GNRs exhibit superior enhanced electrocatalystic activity for oxygen reduction reaction (ORR), including low Tafel slope (39, 41, and 45 mV dec(-1) for Fe3C-GNRs, Co3C-GNRs, and Ni3C-GNRs, respectively), positive onset potential (similar to 0.8 V), high electron transfer number (similar to 4), and long-term stability (no obvious drop after 20 000 s test). The M3C-GNRs catalyst also exhibits remarkable hydrogen evolution reaction (HER) activity with a large cathodic current density of 166.6, 79.6, and 116.4 mA cm(-2) at an overpotential of 200 mV, low onset overpotential of 32, 41, and 35 mV, small Tafel slope of 46, 57, and 54 mV dec(-1) for Fe3C-GNRs, Co3C-GNRs, and Ni3C-GNRs, respectively, as well as an excellent stability in acidic media.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available