4.8 Article

The size effect of titania-supported Pt nanoparticles on the electrocatalytic activity towards methanol oxidation reaction primarily via the bifunctional mechanism

Journal

JOURNAL OF POWER SOURCES
Volume 280, Issue -, Pages 166-172

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2015.01.081

Keywords

Pt nanoparticle; Titania; Plasma-enhanced atomic layer deposition; Methanol oxidation reaction; Bifunctional mechanism; Electronic effect

Funding

  1. Ministry of Science and Technology, R.O.C. [MOST 103-2221-E-009-059-MY3]

Ask authors/readers for more resources

We prepared Pt nanoparticles of different particle sizes by plasma enhanced atomic layer deposition (PEALD) on the native oxide surface layer of Ti thin films, and investigated the Pt particle size effect on the electrocatalytic activity towards methanol oxidation reaction (MOR) in acidic media. The average Pt nanoparticles size ranges from 3 nm to 7 nm depending on the number of the PEALD reaction cycles. The electronic interaction between Pt nanoparticles and the TiO2 support is insignificant according to x-ray photoelectron spectroscopy analyses, suggesting that the influence of the Pt particle size on the electrocatalytic activity can be mainly described by the bifunctional mechanism. From cyclic voltammetry measurements, Pt particles of smaller size have a better CO tolerance in MOR. We proposed the reaction steps for the electrooxidation of CO adspecies on Pt nanoparticles on the basis of the bifunctional mechanism. The electrode with Pt nanoparticles of similar to 5 nm in size shows the best electrocatalytic performance in terms of CO tolerance and electrochemical stability. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available