4.7 Article

Flow channel design for metallic bipolar plates in proton exchange membrane fuel cells: Experiments

Journal

ENERGY CONVERSION AND MANAGEMENT
Volume 174, Issue -, Pages 814-823

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2018.08.070

Keywords

Metallic bipolar plates (BPPs); Flow channel design; Formability; Channel height; Channel thickness; Fuel cell testing

Funding

  1. National Natural Science Foundation of China [51705308, 51522506]
  2. China Postdoctoral Science Foundation [2018T110393]
  3. Sino-German (CSC-DAAD) Postdoc Scholarship Program [57251553]

Ask authors/readers for more resources

This study offers an efficient design method of flow channels of metallic bipolar plates (BPPs) to improve manufacturing technique of BPPs and maximize power density in proton exchange membrane (PEM) fuel cells. Stamped thin metallic BPPs with anticorrosive and conductive coating are promising candidates for replacing conventional carbon-based BPPs. Nevertheless, unlike carbon-based BPPs, the flow channel design of metallic BPPs should take into account not only the reaction efficiency, but also formability due to the possible rupture of the metallic channel during the micro-forming process. In our previous study, a forming limit model was first proposed to predict the maximum allowable channel height by the forming process. This study is conducted to further propose the method of the design and fabrication of metallic BPPs based on the numerical model. In order to determine channel geometry design from formability perspective, response surface method is utilized to build a formability model. Combining the formability model and reaction efficiency, flow field design for metallic BPPs (channel width of 0.9 mm, rib width of 0.9 mm, channel depth of 0.4 mm and radius of 0.15 mm) is proposed. Experiments on BPP fabrication and assembled 20-cell fuel cell testing are conducted to observe forming quality of micro channel and output performance on the real fuel cell. It is shown that the stamping force grows with increasing channel depth in a nonlinear manner and a blank holder is needed to eliminate the sheet wrinkle in the forming process. The uniformity of the voltage distribution in the 1000 W-class stack further proves the reliability of metallic BPPs designed by our method. The methodology developed is beneficial to the fabrication management of metallic BPPs and effective supplement to the channel design principle for PEM fuel cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available