4.7 Article

Global optimization of the diesel engine-organic Rankine cycle (ORC) combined system based on particle swarm optimizer (PSO)

Journal

ENERGY CONVERSION AND MANAGEMENT
Volume 174, Issue -, Pages 248-259

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2018.08.040

Keywords

Organic Rankine cycle; Combined system; Integrated simulation; Global optimization; Particle swarm optimizer

Funding

  1. National Natural Science Foundation of China [51776005, 51376011]
  2. Beijing Natural Science Foundation [3152005]

Ask authors/readers for more resources

The organic Rankine cycle (ORC) system powered by exhaust heat has great potential in improving engine performance. Many optimizations of the only ORC system were conducted, while the existing literature pays limited attention to the optimization of the engine-ORC combined system. By considering the importance of interaction, cooperation, and influence between the engine and ORC system, a global optimization of the diesel engine-ORC combined system (herein, the combined system) is conducted in this paper with respect to power output and fuel economy. A GT-Suite model of the combined system and a GT-Suite/Simulink co-simulation model are proposed to obtain the optimum operating parameters of the engine and the ORC system under various operating conditions. Furthermore, the effects of the operating parameters, namely, exhaust valve timing, injection timing, expander speed, and pump speed, are evaluated on the combined system. In addition, models of the engine and the ORC system are calibrated, and a particle swarm optimizer (PSO) is designed and adopted for global optimization. Optimization results show improvements of 3.24% and 3.13% on the power output and brake specific fuel consumption (BSFC), respectively, with full engine load when the engine is operated at 3600 r/min. In the optimization of fuel economy with partial engine load, a maximum reduction of 5.71% on the BSFC of the combined system is obtained at 3600 r/min engine speed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available