4.7 Review

Characterization of thermal and hydrodynamic properties for microencapsulated phase change slurry (MPCS)

Journal

ENERGY CONVERSION AND MANAGEMENT
Volume 79, Issue -, Pages 317-333

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2013.12.026

Keywords

Microencapsulated phase change slurry; Characterization; Physical properties; Heat transfer; Application

Funding

  1. National Science Foundation of China [51276001]
  2. Common Development Fund of Beijing

Ask authors/readers for more resources

Microencapsulated phase change slurry (MPCS) is a new kind of multi-phase fluid that are proposed and utilized in heat transfer and heat storage systems. Different from traditional organic (paraffin or non-parafin) or inorganic phase change slurries, MPCS is able to maintain both high latent heat capacity and heat transfer rate under controlled volume changes and safe operation conditions. Consequently, in recent decade, MPCS has been widely proposed and tested in textile, building, cooling and heating, solar and thermal storage systems, etc. Based on those recent findings and application developments, characterizations of thermal and hydrodynamic properties for MPCS are made in this study. The basic objective of this paper is to summarize the features of MPCS properties and the establishment of models for MPCS properties and morphologies. The review and analysis are based on recent representative experimental studies, which are categorized into: properties, heat transfer characteristics, stability and applications. Due to the various materials and methods and carry fluids properties, no single model can cover the properties for all MPCS. In this study, each property is reviewed with its specific model and application regions. Basic trends are compared with other kinds of phase change materials. Finally, by investigating those results the future trends of MPCS are presented. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available