4.7 Article

Experimental investigation of performance and regulated emissions of a diesel engine with Calophyllum inophyllum biodiesel blends accompanied by oxidation inhibitors

Journal

ENERGY CONVERSION AND MANAGEMENT
Volume 83, Issue -, Pages 232-240

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2014.03.069

Keywords

Antioxidant; Calophyllum inophyllum biodiesel; Performance; Emission; Diesel-biodiesel blend

Funding

  1. University of Malaya [UM.C/HIR/MOHE/ENG/07]

Ask authors/readers for more resources

Biodiesel having higher unsaturation possesses lower oxidation stability, which needs treatment of oxidation inhibitors or antioxidants. It is expected that antioxidants may affect the clean burning characteristic of biodiesel. Calophyllum inophyllum Linn oil is one of the promising non-edible based feedstock which consists of mostly unsaturated fatty acids. This paper presents an experimental investigation of the antioxidant addition effect on engine performance and emission characteristics. Biodiesel (CIBD) was produced by one step esterification using sulfuric acid (H2SO4) as catalyst and one step transesterification using potassium hydroxide (KOH) as a catalyst. Two monophenolic, 2(3)-tert-Butyl-4-methoxyphenol (BHA) and 2,6-di-tert-butyl-4-methylphenol (BHT) and one diphenolic, 2-tert-butylbenzene-1,4-diol (TBHQ) were added at 2000 ppm concentration to 20% CIBD (CIB20). The addition of antioxidants increased oxidation stability without causing any significant negative effect of physicochemical properties. TBHQ showed the greatest capability in increasing stability of CIB20. The tests were carried out using a 55 kW 2.5 L four-cylinder diesel engine at constant load varying speed condition. The performance results indicate that CIB20 showed 1.36% lower mean brake power (BP) and 4.90% higher mean brake specific fuel consumption (BSFC) compared to diesel. The addition of antioxidants increased BP and reduced BSFC slightly. Emission results show that CIB20 increased NOx but decreased CO and HC emission. Antioxidants reduced 1.6-3.6% NOx emission, but increased both CO and HC emission compared to CIB20. However, the level was below the diesel emission level. Thus CIB20 blends with antioxidants can be used in diesel engines without any modification. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available