4.8 Article

Fabrication of manganese dioxide nanoplates anchoring on biomass-derived cross-linked carbon nanosheets for high-performance asymmetric supercapacitors

Journal

JOURNAL OF POWER SOURCES
Volume 300, Issue -, Pages 309-317

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2015.09.077

Keywords

Asymmetric supercapacitor; Biomass; Carbon nanosheets; Manganese dioxide; Composite

Funding

  1. National Natural Science Foundation of China [51572052]

Ask authors/readers for more resources

In this paper, MnO2 nanoplates loading on biomass-derived cross-linked carbon nanosheets have been prepared by a two-step synthesis. At first, the cross-linked carbon nanosheets derived from willow catkin are synthesized by one-step pyrolysis and activation method, then the MnO2 anchored cross-linked carbon nanosheets is prepared via in-situ hydrothermal deposition. The asymmetric supercapacitor with terrific energy and power density is assembled by employing the MnO2 anchored cross-linked carbon nanosheets as the positive electrode and the cross-linked carbon nanosheets as the negative electrode in a 1 M Na2SO4 electrolyte. The asymmetric supercapacitor displays a high energy density of 23.6 Wh kg(-1) at a power density of 188.8 W kg(-1) within a wide voltage rage of 0-1.9 V. In addition, the asymmetric supercapacitor exhibits excellent cycling stability with only 1.4% capacitance loss after 10000 cycles at 1 A g(-1). These discoveries open up the prospect of biomass/biowaste derived carbon-based composites for high-voltage asymmetric supercapacitors with superb energy and power density performance. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available