4.8 Article

Cost savings for manufacturing lithium batteries in a flexible plant

Journal

JOURNAL OF POWER SOURCES
Volume 283, Issue -, Pages 506-516

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2015.02.142

Keywords

Lithium ion; Automotive batteries; Flexible plant; Manufacturing cost

Funding

  1. Vehicle Technologies Program
  2. Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]

Ask authors/readers for more resources

The flexible plant postulated in this study would produce four types of batteries for electric-drive vehicles - a hybrid (HEV), 10-mile range and 40-mile range plug-in hybrids (PHEV), and a 150-mile range battery-electric (EV). The annual production rate of the plant is 235,000 battery packs (HEV: 100,000; PHEV10: 60,000; PHEV40: 45,000; EV: 30,000). The cost savings per battery pack calculated with the Argonne BatPaC model for this flex plant vs. dedicated plants range from 9% for the EV battery packs to 21% for the HEV packs including the battery management systems (BMS). The investment cost savings are even larger, ranging from 21% for EVs to 43% for HEVs. The costs of the 1.0-kWh HEV batteries are projected to approach $714 per unit and that of the EV batteries to approach $188 per kWh with the most favorable cell chemistries. The best single indicator of the cost of producing lithium-manganate spinel/graphite batteries in a flex plant is the total cell area of the battery. For the four batteries studied, the price range is $20-24 per m(2) of cell area, averaging $21 per m(2) for the entire flex plant. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available