4.7 Article

Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids

Journal

ENERGY CONVERSION AND MANAGEMENT
Volume 52, Issue 1, Pages 789-793

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2010.06.072

Keywords

Nanofluids; Thermal conductivity; Dynamic viscosity; Empirical correlations

Ask authors/readers for more resources

In this paper, two empirical correlations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids, based on a high number of experimental data available in the literature, are proposed and discussed. It is found that, given the nanoparticle material and the base fluid, the ratio between the thermal conductivities of the nanofluid and the pure base liquid increases as the nanoparticle volume fraction and the temperature are increased, and the nanoparticle diameter is decreased. Additionally, also the ratio between the dynamic viscosities of the nanofluid and the pure base liquid increases as the nanoparticle volume fraction is increased, and the nanoparticle diameter is decreased, being practically independent of temperature. The ease of application of the equations proposed, and their wide regions of validity (the ranges of the nanoparticle diameter, volume fraction and temperature are 10-150 nm, 0.002-0.09 and 294-324 K for the thermal conductivity data, and 25-200 nm, 0.0001-0.071 and 293-323 K for the dynamic viscosity data), make such equations useful by the engineering point of view, for both numerical simulation purposes and thermal design tasks. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available