4.7 Article

Baseline building energy modeling and localized uncertainty quantification using Gaussian mixture models

Journal

ENERGY AND BUILDINGS
Volume 65, Issue -, Pages 438-447

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.enbuild.2013.05.037

Keywords

Baseline building energy modeling; Gaussian Mixture Models; Uncertainty quantification; Retrofit analysis

Ask authors/readers for more resources

Uncertainty analysis of building energy prediction is critical to characterize the baseline performance of a building for impact assessment of energy saving schemes that include fault detection and diagnosis (FDD) systems, advanced control policies and retrofits among others. This paper presents a novel approach based on Gaussian Mixture Regression (GMR) for modeling building energy use with parameterized and locally adaptive uncertainty quantification. The choice of GMR is motivated by two key advantages (1) the number of unique operational patterns of a building can be identified using an information-theoretic criteria in a data-driven manner and (2) confidence bounds on baseline prediction are localized and their estimation is integrated with the modeling process itself. The proposed GMR approach is applied to two cases (1) one year synthetic data set generated by Department of Energy (DoE) reference model for a supermarket in Chicago climate and (2) one year field data for a retail store building located in California. The results from GMR model are compared with some prevalent multivariate regression models for baseline building energy use. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available