4.7 Article

Performance assessment of a BIPV integrated with a layer of water-saturated MEPCM

Journal

ENERGY AND BUILDINGS
Volume 67, Issue -, Pages 322-333

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.enbuild.2013.08.035

Keywords

Photovoltaic (PV); Building-integrated photovoltaic (BIPV); Microencapsulated phase change material (MEPCM); Thermal management

Ask authors/readers for more resources

The use of a water-saturated microencapsulated phase change material (MEPCM) layer as a passive thermal management medium for a building-integrated photovoltaic (BIPV) was modeled by CFD numerical simulation to explore the effects of different MEPCM melting points and MEPCM layer thicknesses on the thermal and electrical performance. The well-designed BIPV can hopefully remain at a relatively low temperature during peak sunshine hours due to the absorption of latent heat during the phase change of the MEPCM layer, which reduces the decrease in electric generation efficiency caused by the increase in temperature due to solar radiation, thereby enhancing the electric generation efficiency. The results showed that a BIPV integrated with a MEPCM layer produced a significant improvement in the thermal and electrical performance compared to an untreated PV module. Under local summer climatic conditions, a melting point of 30 C and a 3-cm-thick MEPCM (using paraffin as the core material) layer are recommended for the thermal management medium. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available