4.7 Article

Key elements of and material performance targets for highly insulating window frames

Journal

ENERGY AND BUILDINGS
Volume 43, Issue 10, Pages 2583-2594

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.enbuild.2011.05.010

Keywords

Fenestration; Window frames; Heat transfer modeling; U-factor; Thermal transmittance; Thermal performance

Funding

  1. Office of Building Technology, Building Technologies Program of the U.S. Department of Energy [DE-AC02-05CH11231]

Ask authors/readers for more resources

The thermal performance of windows is important for energy efficient buildings. Windows typically account for about 30-50 percent of the transmission losses though the building envelope, even if their area fraction of the envelope is far less. The reason for this can be found by comparing the thermal transmittance (U-factor) of windows to the U-factor of their opaque counterparts (wall, roof and floor constructions). In well insulated buildings the U-factor of walls, roofs and floors can be between 0.1 and 0.2 W/(m(2) K). The best windows have U-factors of about 0.7-1.0. It is therefore obvious that the U-factor of windows needs to be reduced, even though looking at the whole energy balance for windows (i.e., solar gains minus transmission losses) makes the picture more complex. In high performance windows the frame design and material use are of utmost importance, as the frame performance is usually the limiting factor for reducing the total window U-factor further. This paper describes simulation studies analyzing the effects on frame and edge-of-glass U-factors of different surface emissivities as well as frame material and spacer conductivities. The goal of this work is to define material research targets for window frame components that will result in better frame thermal performance than is exhibited by the best products available on the market today. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available