4.7 Article

Life cycle cost implications of energy efficiency measures in new residential buildings

Journal

ENERGY AND BUILDINGS
Volume 43, Issue 4, Pages 915-924

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.enbuild.2010.12.013

Keywords

Residential; Energy efficiency; Thermal model; Life-cycle costing; Policy

Funding

  1. Australian Research Council [LPO776834]

Ask authors/readers for more resources

The importance of the built environment from an environmental impact and energy use perspective is well established. High thermal efficiency of the constructed building envelope is a key strategy in the design and construction of buildings which limit use of active space conditioning systems. Australia's current housing stock is thermally poor and national energy performance standards are relatively weak when benchmarked against international best practice. A lack of data has impeded the policy debate and a significant gap in analysis remains a lack of empirical research into the life-cycle cost implications of increased building thermal efficiency, particularly for residential buildings. This paper applies an integrated thermal modeling, life cycle costing approach to an extensive sample of dominant house designs to investigate life cycle costs in a cool temperate climate, Melbourne Victoria. Empirical analysis provides new insights into lifetime costs and environmental savings for volume housing design options and identifies sensitive factors. Results suggest that the most cost-effective building design is always more energy efficient than the current energy code requirements, for the full time-horizon considered. Findings have significant policy implications, particularly in view of present debates which frequently present higher energy efficiency standards as prohibitive from a costs perspective. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available