4.7 Article Proceedings Paper

Thermal conditions and ventilation in an ideal city model of Hong Kong

Journal

ENERGY AND BUILDINGS
Volume 43, Issue 5, Pages 1139-1148

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.enbuild.2010.06.005

Keywords

Urban thermal environment; Thermal buoyancy; Thermal stratification; City ventilation

Ask authors/readers for more resources

Urban heat island can significantly increase the demand for cooling of buildings in cities. This paper investigates one of the main causes of the urban heat island phenomenon, i.e. reduced city ventilation. Two simple Hong Kong city models with relatively complex terrain were considered here under different atmospheric conditions. A 3D RNG k-epsilon turbulence model was used for modeling turbulence effects. The simulation results showed that the influence of thermal stratification can be significant on city ventilation driven partially by thermal buoyancy. When the wind speed is relatively large, the impact of thermal stratification on air flow in city street canyons is minor. When the wind speed is small relative to the buoyancy force, the airflow in the street canyons is dependent on thermal stratification. When there is an adverse vertical temperature gradient, the greater the instability, the stronger the vertical mixing and the greater the flow rate caused by turbulence. The heat and pollutants can easily accumulate under stable atmospheric conditions when there is only a weak background wind or none at all. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available