4.7 Article

Experimental investigation of the velocity distribution of the attached plane jet after impingement with the corner in a high room

Journal

ENERGY AND BUILDINGS
Volume 42, Issue 6, Pages 935-944

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.enbuild.2010.01.005

Keywords

Velocity; Attached plane jet; Impinging; Turbulence intensity; Model; Reynolds number

Funding

  1. VTT

Ask authors/readers for more resources

Supplying air into rooms properly without causing a sensation of draught is a challenging task. Airflow patterns and the air velocity of attached plane jets should be predicted and designed accurately before the airflow enters an occupied zone in different applications. The objective of this study is to identify the airflow patterns of attached plane jets and set up an efficient model to predict the maximum jet velocity decay of an attached plane jet after its impingement with the corner in a high room. A full-scale test chamber was used to measure the jet velocity with a plane jet supply device. The attached plane jet is bounded initially by the ceiling and the insulated wall after being discharged from the jet slot. Three velocities from the slot, 0.5, 1.0, and 2.0 m/s, are used as the initial jet velocities with three Reynolds numbers, 1000, 2000, and 4000, respectively. The results show that the behaviours of the attached plane jet differ from earlier studies carried out in a relatively low room. The virtual origin model setup in this study can be used to predict the maximum jet velocity decay for jet flow design with impingement in the corners of rooms. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available