4.7 Article

A high-resolution domestic building occupancy model for energy demand simulations

Journal

ENERGY AND BUILDINGS
Volume 40, Issue 8, Pages 1560-1566

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.enbuild.2008.02.006

Keywords

domestic occupancy; energy modelling

Funding

  1. Engineering and Physical Sciences Research Council [GR/T28836/01] Funding Source: researchfish

Ask authors/readers for more resources

Energy use in the home is a major source of carbon emissions and is highly dependent on the activities of the residents. More specifically, the timing of energy use, particularly electricity, is highly dependent on the timing of the occupants' activities. Thus, in order to model domestic demand profiles with high temporal resolution, for example, in the context of designing and assessing demand side management systems (including the time-shifting of demand), it is of great benefit to take account of residents' behaviour in terms of when they are likely to be using household appliances, lighting and heating. This paper presents a thorough and detailed method for generating realistic occupancy data for UK households, based upon surveyed time-use data describing what people do and when. The approach presented generates statistical occupancy time-series data at a ten-minute resolution and takes account of differences between weekdays and weekends. The model also indicates the number of occupants that are active within a house at a given time, which is important for example in order to model the sharing of energy use (shared use of appliances, etc.) The data from the model can be used as input to any domestic energy model that uses occupancy time-series as a base variable, or any other application that requires detailed occupancy data. The model has been implemented in Excel and is available for free download. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available