4.7 Article

Comparison between PCM filled glass windows and absorbing gas filled windows

Journal

ENERGY AND BUILDINGS
Volume 40, Issue 5, Pages 710-719

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.enbuild.2007.05.005

Keywords

double glass window; PCM; absorbing gases; numerical modeling

Ask authors/readers for more resources

From the thermal point of view, windows represent the weak link between the internal and external ambients of a room. In cold climates, they are responsible for 10-25% of the heat lost from the heated ambient to the external atmosphere. In hot climates, the excessive solar radiation entering the internal ambient through the windows leads to increasing the cooling load of the refrigeration system. The use of absorbing gases filling the gap between glass sheets appears to be an alternative solution for thermally insulated glass windows. The other options one may incorporate filling materials such as silica aerogel or a PCM. In this work. a comparison between the thermal efficiency of two glass windows one filled with an absorbing gas and the other with a PCM and exposed to solar radiation in a hot climate is done. To model double glass window filled with infrared absorbing gases, a CW real gas model is used. A radiative convective conductive model and a radiative conductive model were investigated. Three mixtures of gases were used; a strongly absorbing gas mixture, an intermediate absorbing gas mixture and a transparent to infrared radiation mixture. To model the double glass window filled with a PCM, a relatively simple and effective radiation conduction one dimensional formulation is used. Heat transfer through the window is calculated and the total heat gain coefficients are compared and discussed. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available