4.7 Article

Development of a numerical model to predict heat exchange rates for a ground-source heat pump system

Journal

ENERGY AND BUILDINGS
Volume 40, Issue 12, Pages 2133-2140

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.enbuild.2008.06.004

Keywords

Ground-source heat pump; Ground heat exchanger; Numerical simulation

Ask authors/readers for more resources

Ground-source heat pump (GSHP) systems can achieve a higher coefficient of performance than conventional air-source heat pump (ASHP) systems. For the design of a GSHP system, it is necessary to accurately predict the heat extraction and injection rates of the heat exchanger. Many models that combine ground heat conduction and heat exchangers have been proposed to predict heat extraction/injection rates from/into the ground in the research field of heating, ventilation and air-conditioning systems. However, most analysis models are inaccurate in their predictions for long periods because they are based on a thermal conduction model using a cylindrical coordinate model or an equivalent diameter model. In this paper, a numerical model that combines a heat transport model with ground water flow and a heat exchanger model with an exact shape is developed. Furthermore, a method for estimating soil properties based on ground investigations is proposed. Comparison between experimental results and numerical analysis based on the model developed above was conducted under the conditions of an experiment from 2004. The analytical results agreed well with the experimental results. Finally, the proposed model was used to predict the heat exchange rate for an actual office building in Japan. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available