4.7 Article

Molecular Dynamics Simulations of the Crystallization Process of n-Alkane Mixtures and the Resulting Thermal Conductivity

Journal

ENERGY & FUELS
Volume 32, Issue 11, Pages 11253-11260

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.energyfuels.8b02500

Keywords

-

Funding

  1. U.S. Department of Energy [DE-SC0002470]
  2. Alabama Commission on Higher Education's Graduate Research Student Program Fellowships

Ask authors/readers for more resources

To elucidate the underlying mechanism of crystallization processes of n-alkane mixtures, molecular dynamics simulation is used to assess the effect of the morphology on thermal conductivity. Binary mixtures of n-eicosane and n-triacontane with different molecular number ratios are solidified following two approaches: the surface potential route and the free surface route. There exists a marked discrepancy of the orientation factor of the resulting solid n-alkane molecules following the imposed surface potential and the free surface routes corresponding to observed layered systems and random ordering of molecular chains, respectively. In addition, the thermal conductivities of the n-alkane mixtures are evaluated using non equilibrium molecular dynamics. The results suggest that the orientation factor of the molecular system greatly impacts the thermal transport of n-alkane mixtures at the nanometer scale, with a negligible influence of the number ratio of n-triacontane. Moreover, the solid ratio plays a significant role on the thermal conductivity for low orientation factor systems by adjusting the number of thermal interfaces of the entire molecular system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available