4.7 Article

Morphology of Methane Hydrate Formation in Porous Media

Journal

ENERGY & FUELS
Volume 27, Issue 6, Pages 3364-3372

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ef4004818

Keywords

-

Funding

  1. Ministry of Education's AcRF Tier 1 [R-279-000-386-112]
  2. Centre of Offshore Research and Engineering (CORE) in the National University of Singapore [R-302-501-008-112]

Ask authors/readers for more resources

Experiments at 8.0 MPa and 277.15 K were carried out in different porous media, such as silica sand and activated carbon, to observe the formation and dissociation of methane hydrate in a specially designed crystallizer for mophology observation. In silica sand bed, we observed a clear hydrate front moving across the bed in the crystallizer at the experimental conditions with 50 and 100% water saturation. The hydrate crystals were observed to form in the interstitial pore space available between the silica sand particles. Whereas in activated carbon bed experiments, hydrates were observed to nucleate on the surface of the activated carbon grain and then dissociate within the stable hydrate formation region. For the first time, we were able to observe this behavior of transient hydrate crystal formation/dissociation in the stable hydrate region in porous media. We postulated that the particle size, pore space, and water saturation level may play a role in the above phenomenon. A clear hydrate front movement across the crystallizer and stable hydrate formation were observed when smaller sized activated carbon grains were used. In all of the experiments, the hydrate crystals were seen to form in the interstitial pore space between the porous media. Our results show that pore space and its interconnectivity play an important role in methane hydrate formation in porous media consisting of silica sand or activated carbon.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available