4.8 Article

Photonic light trapping in self-organized all-oxide microspheroids impacts photoelectrochemical water splitting

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 7, Issue 8, Pages 2680-2688

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ee00380b

Keywords

-

Funding

  1. Swiss National Science Foundation [137868, 121306]
  2. Nano Tera project SHINE (Solar Hydrogen Integrated Nano Electrolysis)

Ask authors/readers for more resources

Thin films involving an oxide heterojunction are increasingly employed as electrodes for solar water splitting in photoelectrochemical cells. Hematite (alpha-Fe2O3) and tungsten oxide form an attractive heterojunction for this purpose. A major limitation of this strategy is the short charge carrier diffusion length in hematite. Ultrathin films were implemented to address this low conductivity issue. Nevertheless, such ultrathin films do not absorb light efficiently. The present study explores light trapping strategies to increase the optical path length of photons in hematite. Vesicle suspensions were developed to obtain thin films composed of a microspheroid array with a tungsten oxide core and a nanometer sized hematite overlayer. This bottom-up approach allows a fine control of the spheroid dimensions at the micrometric to the submicrometric scale. Using the finite difference time domain method, light propagation inside the microstructures was quantitatively simulated. The simulation results were coupled to an analysis of the photoelectrochemical response of the films. Experiments and simulation show quantitative agreement and bring important insights into the relationship between the interaction of light with the microstructure and the photoanode performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available