4.8 Article

Capacitive mixing power production from salinity gradient energy enhanced through exoelectrogen-generated ionic currents

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 7, Issue 3, Pages 1159-1165

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ee43823f

Keywords

-

Funding

  1. National Science Foundation Graduate Research Fellowship Program [DGE1255832]
  2. King Abdullah University of Science and Technology (KAUST) [KUS-I1-003-13]

Ask authors/readers for more resources

Several approaches to generate electrical power directly from salinity gradient energy using capacitive electrodes have recently been developed, but power densities have remained low. By immersing the capacitive electrodes in ionic fields generated by exoelectrogenic microorganisms in bioelectrochemical reactors, we found that energy capture using synthetic river and seawater could be increased similar to 65 times, and power generation similar to 46 times. Favorable electrochemical reactions due to microbial oxidation of organic matter, coupled to oxygen reduction at the cathode, created an ionic flow field that enabled more effective passive charging of the capacitive electrodes and higher energy capture. This ionic-based approach is not limited to the use of river water-seawater solutions. It can also be applied in industrial settings, as demonstrated using thermolytic solutions that can be used to capture waste heat energy as salinity gradient energy. Forced charging of the capacitive electrodes, using energy generated by the bioelectrochemical system and a thermolytic solution, further increased the maximum power density to 7 W m(-2) (capacitive electrode).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available