4.8 Article

Highly durable all-fiber nanogenerator for mechanical energy harvesting

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 6, Issue 9, Pages 2631-2638

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ee41063c

Keywords

-

Funding

  1. Research Grants Council [PolyU5131/11E]
  2. Innovation and Technology Commission of the Hong Kong SAR Government [ITP/007/10 TP]

Ask authors/readers for more resources

Future generations of wearable electronic systems and mobile communication place a great demand for harvesting energy from ambient environments or human movements. Soft fiber-based electric power generators are attractive in meeting the requirements of wearable devices because of efficient energy conversion performance, high durability and comfort. In this paper, we present a novel all-fiber wearable electric power nanogenerator, which consists of a PVDF-NaNbO3 nanofiber nonwoven fabric as an active piezoelectric component, and an elastic conducting knitted fabric, made from segmented polyurethane and silver coated polyamide multifilament yarns, as the top and bottom electrodes. The non-uniform deformation distribution in a compressed nanogenerator device determines the complex operating modes in the piezoelectric nanofiber nonwoven fabric. The nanogenerator consistently produces a peak open-circuit voltage of 3.4 V and a peak current of 4.4 mu A in cyclic compression tests at 1 Hz and a maximum pressure of 0.2 MPa, which is comparable to normal human walking motion. More importantly, the all-fiber nanogenerator retains its performance after 1 000 000 compression cycles, demonstrating great promise as a wearable energy harvester that converts the mechanical energy of human movement into electricity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available