4.8 Article

Highly active screen-printed electrocatalysts for water oxidation based on β-manganese oxide

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 6, Issue 7, Pages 2222-2232

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ee40429c

Keywords

-

Funding

  1. Australian Research Council through the ARC Centre of Excellence for Electromaterials Science (ACES)
  2. Australian Synchrotron [M4893]
  3. Australian Research Council

Ask authors/readers for more resources

A versatile screen-printing method is applied for the preparation of efficient water oxidation catalysts based on a nanostructured beta-MnO2 material prepared by a redox-precipitation method, and commercial b-MnO2. The catalyst films were tested for activity in water oxidation over a range of neutral to alkaline pH. The onset of water oxidation in case of the nanostructured MnO2 films is found at an overpotential (h) of 300 mV at pH 13.6 (1.0 M NaOH), with current densities reaching 10 mA cm(-2) at eta = 500 mV. The screen-printed MnO2 (nano) is one of the most active manganese oxide-based catalysts reported to date, despite consisting mostly of the common pyrolusite (beta-MnO2) phase, so far generally found inactive in water oxidation. The films prepared from commercial beta-MnO2 were found to be moderately active, with an onset of water oxidation at eta = 500 mV (pH 13.6), and currents up to 5 mA cm(-2) at eta = 800 mV. At pH 6, the two samples exhibit similar activity and also match or surpass the performance of recent benchmark manganese oxides. X-ray absorption spectroscopy (XAS) studies suggest that the crystal phase is unchanged after prolonged electrochemical cycling. Scanning electron microscopy (SEM) analysis indicates very little corrosion of the surface morphology after prolonged catalyst operation at alkaline pH. However, high-resolution transmission electron microscopy (HRTEM) analysis shows the formation of a small amount of an amorphous phase on the surface of the nanorods after oxygen evolution over 12 hours in alkaline media.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available