4.8 Article

Direct observation of the reduction of carbon dioxide by rhenium bipyridine catalysts

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 6, Issue 12, Pages 3748-3755

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ee42186d

Keywords

-

Funding

  1. Air Force Office of Scientific Research through the MURI program under AFOSR Award [FA9550-10-1-0572]
  2. Office of Science of the U.S. Department of Energy [DE-SC0004993]

Ask authors/readers for more resources

In order to further efforts in synthesis and catalysis, the mechanisms of catalysts must be completely understood. The Re(bpy)(CO)(3)Cl molecular catalysts are some of the most robust and well-characterized CO2 reduction catalysts known to date. Stopped-flow infrared spectroscopy is reported as a technique for studying the kinetics and mechanisms of the reactions of catalytically-relevant [Re(bpy-R)(CO)(3)](-) anions (R = tBu or H) with CO2/H+. [Re(bpy-tBu)(CO)(3)](-) reacts approximately ten times faster with CO2 than does [Re(bpy)(CO)(3)](-). These reactions occur via a direct two-electron oxidative addition of CO2 to the metal center and result in the formation of an intermediate CO2 reduction product, Re(bpy-R)(CO)(3)(CO2H). This is the first in situ identification of this key intermediate. Evidence for this Re-CO2H species includes isotopic labeling studies, stopped-flow experiments of the kinetics of its formation in the presence of proton sources, comparison with genuine Re(bpy)(CO)(3)(CO2H), and DFT calculations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available