4.8 Article

Optimization of photoelectrochemical water splitting performance on hierarchical TiO2 nanotube arrays

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 5, Issue 4, Pages 6506-6512

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ee03461a

Keywords

-

Ask authors/readers for more resources

In this paper, we show that by varying the voltages during two-step anodization the morphology of the hierarchical top-layer/bottom-tube TiO2 (TiO2 NTs) can be finely tuned between nanoring/nanotube, nanopore/nanotube, and nanohole-nanocave/nanotube morphologies. This allows us to optimize the photoelectrochemical (PEC) water splitting performance on the hierarchical TiO2 NTs. The optimized photocurrent density and photoconversion efficiency in this study, occurring on the nanopore/nanotube TiO2 NTs, were 1.59 mA cm(-2) at 1.23 V vs. RHE and 0.84% respectively, which are the highest values ever reported on pristine TiO2 materials under illumination of AM 1.5G. Our findings contribute to further improvement of the energy conversion efficiency of TiO2-based devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available