4.8 Article

Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heuslers Hf1-xTixCoSb0.8Sn0.2

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 5, Issue 6, Pages 7543-7548

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ee21554c

Keywords

-

Funding

  1. US Department of Energy [DOE DE-FG02-00ER45805]
  2. Solid State Solar-Thermal Energy Conversion Center (S3TEC)
  3. US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001299]
  4. Grants-in-Aid for Scientific Research [23760178] Funding Source: KAKEN

Ask authors/readers for more resources

High lattice thermal conductivity has been the bottleneck for further improvement of the thermoelectric figure-of-merit (ZT) of half-Heuslers (HHs) Hf1-xZrxCoSb0.8Sn0.2. Theoretically, the lattice thermal conductivity can be reduced by exploring larger differences in the atomic mass and size in the crystal structure, leading to higher ZT. In this paper, we experimentally demonstrated that a lower thermal conductivity in p-type half-Heuslers can be achieved when Ti is used to replace Zr, i.e., Hf1-xTixCoSb0.8Sn0.2, due to larger differences in the atomic mass and size between Hf and Ti compared with Hf and Zr. The highest ZT peak, similar to 1.0 at 800 degrees C, in the Hf-1 xTixCoSb0.8Sn0.2 (x = 0.1, 0.2, 0.3, and 0.5) system was achieved using Hf0.8Ti0.2CoSb0.8Sn0.2, which makes this material useful in power generation applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available