4.8 Article

Exploiting H-transfer reactions with RANEY® Ni for upgrade of phenolic and aromatic biorefinery feeds under unusual, low-severity conditions

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 5, Issue 8, Pages 8244-8260

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ee21855k

Keywords

-

Funding

  1. Alexander von Humboldt Foundation
  2. Excellence Initiative of the German federal government
  3. Excellence Initiative of the German state government

Ask authors/readers for more resources

This paper focuses on the fundamental chemical aspects of hydrogen transfer reactions with RANEY (R) Ni and propan-2-ol. It aims at novel process options for defunctionalization and hydrodeoxygenation of phenolic and aromatic biorefinery feeds under low-severity conditions. A series of 32 model substrates were explored, providing a comprehensive description of the reactivity of RANEY (R) Ni toward transfer hydrogenation and transfer hydrogenolysis. In addition, the aspects related to the catalyst stability were addressed in detail. With regard to the processing of a model-substrate mixture, important features of the chemoselectivity of RANEY (R) Ni were also revealed. Herein, we also demonstrate that hydrogen transfer reactions could hold the key to the upgrade of bio-oil under unusual, low-severity conditions. Indeed, bio-oil was easily upgraded to cyclohexanols and less functionalized alkylphenols, with RANEY (R) Ni and propan-2-ol, at 120 degrees C. Full saturation of bio-oil to cyclic alcohols, cyclohexane-1,2-diols and other products with reduced oxygen content was achieved at 160 degrees C under autogenous pressure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available