4.8 Article

High performance polymeric charge recombination layer for organic tandem solar cells

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 5, Issue 12, Pages 9827-9832

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ee23294d

Keywords

-

Funding

  1. Center for Interface Science: Solar Electric Materials, an Energy Frontier Research Center
  2. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001084]
  3. STC Program of the National Science Foundation [DMR-0120967]
  4. Office of Naval Research [N00014-04-1-0313]

Ask authors/readers for more resources

We report on inverted polymer tandem solar cells wherein the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), modified at one interface with ethoxylated polyethylenimine (PEIE), acts as an efficient charge recombination layer. This recombination layer shows very low optical absorption, high electrical conductivity, and a large work function contrast of 1.3 eV between its top and bottom interfaces. Its use yields tandem cells in which the open-circuit voltage is the sum of that of individual cells. The fill factor of tandem cells connected in series is found to be larger than that of single-junction cells. Its simple polymeric composition and its unprecedented performance make it a promising component for emerging organic photovoltaic technologies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available