4.8 Article

Electrolyte roadblocks to a magnesium rechargeable battery

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 5, Issue 3, Pages 5941-5950

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ee03029b

Keywords

-

Ask authors/readers for more resources

Low cost, non-dendritic magnesium metal is an ideal anode for a post lithium ion battery. Currently, development of magnesium electrolytes governs the rate of progress in this field, because electrolyte properties determine the class of cathodes utilized. A review of the latest progress in the area of magnesium battery electrolyte and a perspective on mitigating present challenges is presented herein. Firstly, density functional theory has been shown to predict the potential window of magnesium electrolytes on inert electrodes. Secondly, we report initial efforts aimed to overcome the corrosive property of these magnesium organohaloaluminates towards less noble metals such as stainless steel. This is a major challenge in developing high voltage magnesium electrolytes essential for batteries which operate above 3V. We lastly touch on cathode candidates including the insertion and conversion classes. One conversion cathode we pay particular attention to is electrophilic sulfur which can be married with magnesium metal anodes by utilizing non-nucleophilic electrolytes obtained by simple crystallization of in situ generated magnesium organohaloaluminates. Effectively, non-nucleophilic electrolytes open the door to research on magnesium/sulfur batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available