4.8 Review

A review on non-precious metal electrocatalysts for PEM fuel cells

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 4, Issue 9, Pages 3167-3192

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0ee00558d

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. University of Waterloo
  3. National Research Council of Canada Institute for Fuel Cell Innovation

Ask authors/readers for more resources

With the approaching commercialization of PEM fuel cell technology, developing active, inexpensive non-precious metal ORR catalyst materials to replace currently used Pt-based catalysts is a necessary and essential requirement in order to reduce the overall system cost. This review paper highlights the progress made over the past 40 years with a detailed discussion of recent works in the area of non-precious metal electrocatalysts for oxygen reduction reaction, a necessary reaction at the PEM fuel cell cathode. Several important kinds of unsupported or carbon supported non-precious metal electrocatalysts for ORR are reviewed, including non-pyrolyzed and pyrolyzed transition metal nitrogen-containing complexes, conductive polymer-based catalysts, transition metal chalcogenides, metal oxides/carbides/nitrides/oxynitrides/carbonitrides, and enzymatic compounds. Among these candidates, pyrolyzed transition metal nitrogen-containing complexes supported on carbon materials (M N-x/C) are considered the most promising ORR catalysts because they have demonstrated some ORR activity and stability close to that of commercially available Pt/C catalysts. Although great progress has been achieved in this area of research and development, there are still some challenges in both their ORR activity and stability. Regarding the ORR activity, the actual volumetric activity of the most active non-precious metal catalyst is still well below the DOE 2015 target. Regarding the ORR stability, stability tests are generally run at low current densities or low power levels, and the lifetime is far shorter than targets set by DOE. Therefore, improving both the ORR activity and stability are the major short and long term focuses of non-precious metal catalyst research and development. Based on the results achieved in this area, several future research directions are also proposed and discussed in this paper.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available