4.8 Article

Scalable approach to multi-dimensional bulk Si anodes via metal-assisted chemical etching

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 4, Issue 12, Pages 5013-5019

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1ee02310a

Keywords

-

Funding

  1. Ministry of Education, Science and Technology [2010K000984]
  2. WCU [R31-2008-000-20012-0]

Ask authors/readers for more resources

Specific design and optimization of the configuration of micro-scale materials can effectively enhance battery performance, including volumetric density. Herein, we employed commercially available low-cost bulk silicon powder to produce multi-dimensional silicon composed of porous nanowires and micro-sized cores, which can be used as anode materials in lithium-ion batteries, by combining a metal deposition and metal-assisted chemical etching process. Nanoporous silicon nanowires of 5-8 mu m in length and with a pore size of similar to 10 nm are formed in the bulk silicon particle. The silicon electrodes having multi-dimensional structures accommodate large volume changes of silicon during lithium insertion and extraction. These materials show a high reversible charge capacity of similar to 2400 mAh g(-1) with an initial coulombic efficiency of 91% and stable cycle performance. The synthetic route described herein is simple, low-cost, and mass producible (high yield of 40-50% in tens of gram scale), and thus, provides an effective method for producing high-performance anode materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available