4.8 Article

Factors affecting cyclic durability of all-solid-state lithium polymer batteries using poly(ethylene oxide)-based solid polymer electrolytes

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 3, Issue 12, Pages 1995-2002

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0ee00266f

Keywords

-

Funding

  1. New Energy and Industrial Technology Development Organization (NEDO) of Japan [06A23003c]

Ask authors/readers for more resources

In this paper, the electrochemical properties and performances of all-solid-state lithium polymer batteries (LPBs) using standard PEO-based solid-state polymer electrolytes (SPEs) are reported and discussed. The assembled cell showed stable charge-discharge cycles (>150 cycles) at 30 degrees C. This is due to desirable solid electrolyte interface (SEI) film formation at the SPE|cathode interface at the first cycle indicated by activation energy measurements for interfacial Li ion exchange reaction. However, sudden capacity fading for prolonged electrochemical cycles was indicated by an accelerated aging test at higher current density (1 C) and temperature conditions (60 degrees C), accompanied by an increase of electrochemical polarization. This degradation phenomenon may be fatal for practical usage of large-scale batteries which requires extremely long-time durability. Two sequential factors affecting the capacity fading are proposed through the studies of in situ (19)F-NMR imaging, real-time monitoring of the total cell thickness, and electrochemical measurements such as AC impedance. One factor is degradation of the cathode sheet or cathode composite assembly, owing to cyclic volumetric change from the two-phase LiFePO(4)-FePO(4) reaction. Such degradation leads to uneven electric contact at the electrode|electrolyte interface, thereby enhancing local electrochemical polarization. The second factor, namely, Li salt decomposition, is triggered by this local polarization, giving rise to the continuous capacity fading and the increase of polarization. This degradation scenario can be general enough to include the full range of all-solid-state LPB devices, since the trigger of degradation owes to non-fluidity of solid|solid contact, or solid electrolytes cannot immerse into the cavities caused by pulverization of cathode particles unlike liquid electrolytes. On the basis of these results, we attempted to improve the mechanical properties of the binder materials of cathode sheets, and demonstrated improved cyclic durability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available