4.7 Article

Optimization of catalyst-free production of biodiesel from Ceiba pentandra (kapok) oil with high free fatty acid contents

Journal

ENERGY
Volume 57, Issue -, Pages 615-623

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2013.05.069

Keywords

Supercritical transesterification; Methyl ester; Statistical design; Response plot

Funding

  1. Australian Research Council (ARC) through the ARC Future Fellowship Program [FT100100879]

Ask authors/readers for more resources

Catalyst-free biodiesel production from non-edible Ceiba pentandra (kapok) oil via supercritical methanol transesterification was demonstrated in this work. The supercritical transesterification experiments were performed in a batch reactor at temperatures of 250-350 degrees C, pressures of 10-18 MPa, reaction times of 120-600 s, and methanol to oil molar ratios of 15:1-35:1. Response surface methodology (RSM) and four-way analysis of variance (ANOVA) were applied for the design and optimization of the experiments with respect to temperature, pressure, reaction time, and molar ratio of methanol to oil simultaneously. The response (i.e., FAME yield) was fitted by a quadratic polynomial regression model using least square analysis in a five-level-four-factor central composite design (CCD). The optimum conditions were found as follows: methanol to oil molar ratio of 30:1, temperature of 322 degrees C, pressure of 16.7 MPa, and reaction time of 476 s with FAME (fatty acid methyl ester) yield of 95.5%. The significance of the reaction parameters toward FAME yield was in the order of methanol to oil molar ratio > reaction time > pressure > temperature. (c) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available