4.7 Article

Life cycle assessment of a micromorph photovoltaic system

Journal

ENERGY
Volume 36, Issue 7, Pages 4297-4306

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2011.04.012

Keywords

Photovoltaic; Thin film; Life cycle assessment

Funding

  1. Department of Chemistry of the University of Siena
  2. PRAMAC Swiss Company

Ask authors/readers for more resources

In this paper the results from a in-depth life cycle analysis of production and use of a novel grid-connected photovoltaic micromorph system are presented and compared to other thin film and traditional crystalline silicon photovoltaic technologies. Among the new thin film technologies, the micromorph tandem junction appears to be one of the most promising devices from the industrial point of view. The analysis was based on actual production data given to the authors directly from the PRAMAC Swiss Company and it is consistent with the recommendations provided by the ISO norms and updates. The gross energy requirement, green house gas emissions and energy pay-back time have been calculated for the electric energy output virtually generated by the studied system in a lifetime period of 20 years. A comparative framework is also provided, wherein results obtained for the case study are compared with data from literature previously obtained for the best commercially available competing photovoltaic technologies. Results clearly show a significant decrease in gross energy requirement, in green house gas emissions and also a shorter energy pay-back time for the micromorph technology. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available