4.7 Article Proceedings Paper

Exergetic evaluation of 5 biowastes-to-biofuels routes via gasification

Journal

ENERGY
Volume 35, Issue 2, Pages 996-1007

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2009.06.027

Keywords

Exergy; Biofuels; Gasification; SNG; Methanol; Fischer-Tropsch; Hydrogen; Electricity

Ask authors/readers for more resources

This paper presents the exergy analysis results for the production of several biofuels, i.e., SNG (synthetic natural gas), methanol, Fischer-Tropsch fuels, hydrogen, as well as heat and electricity, from several biowastes generated in the Dutch province of Friesland, selected as one of the typical European regions. Biowastes have been classified in 5 virtual streams according to their ultimate and proximate analysis. All production chains have been modeled in Aspen Plus in order to analyze their technical performance. The common steps for all the production chains are: pre-treatment, gasification, gas cleaning, water-gas-shift reactions, catalytic reactors, final gas separation and upgrading. Optionally a gas turbine and steam turbines are used to produce heat and electricity from unconverted gas and heat removal, respectively. The results show that, in terms of mass conversion, methanol production seems to be the most efficient process for all the biowastes. SNG synthesis is preferred when exergetic efficiency is the objective parameter, but hydrogen process is more efficient when the performance is analyzed by means of the 1st Law of Thermodynamics. The main exergy losses account for the gasification section, except in the electricity and heat production chain, where the combined cycle is less efficient (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available