4.7 Article

Comparison of energy of tillage systems in wheat production

Journal

ENERGY
Volume 34, Issue 1, Pages 41-45

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2008.09.023

Keywords

Tillage; Energy; No-till; Wheat; Plow; Net energy gain; Productivity

Ask authors/readers for more resources

Reducing tillage practices results in lower energy consumption as well as soil erosion protection, structural damage control, and a reduction in time and energy required for seedbed preparation. This research was conducted at the Dryland Agricultural Research Institute in Maragheh region of Iran to determine the amount of input energy for different tillage systems. The study was planned as a completely randomized block design with five tillage systems in four replications. The tillage treatments were: moldboard plow+roller+drill (T1): chisel-roller-drill (T2); cyclo-tiller-roller-drill (T3): sweep-roller-drill (T4): and no-till (T5). Wheat yield parameters and energy indices (net energy gain, energy productivity) were recorded. There were significant differences (1% probability level) among the treatments in terms of energy indices and for wheat yield and biomass values. It was found that T3 had the highest yield and biomass and T1 had the lowest. There were also significant differences (1% probability level) among tillage systems for the energy indices. T1 had the lowest energy productivity and energy ratios and T3 had the highest. The least energy consumed for wheat produced was 8.8 MJ kg(-1) for T5 and the most was 11.8 MJ kg(-1) for T1. Energy consumed for tillage using T1 was 32.5% of the total energy and using T5 was found to be 19% of total energy. It was concluded that T3 was the most efficient overall in the region studied. (c) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available