4.5 Article

Exploring the Potential for Increased Production from the Wave Energy Converter Lifesaver by Reactive Control

Journal

ENERGIES
Volume 6, Issue 8, Pages 3706-3733

Publisher

MDPI
DOI: 10.3390/en6083706

Keywords

wave energy; reactive control; lifesaver; wave-to-wire model; power take-off; point absorber

Categories

Funding

  1. Wave Energy Project
  2. Marie Curie Intra-European Fellowship within the 7th European Community Framework Programme [272571]
  3. Norwegian Research Council

Ask authors/readers for more resources

Fred Olsen is currently testing their latest wave energy converter (WEC), Lifesaver, outside of Falmouth Bay in England, preparing it for commercial operation at the Wavehub test site. Previous studies, mostly focusing on hydrodynamics and peak to average power reduction, have shown that this device has potential for increased power extraction using reactive control. This article extends those analyses, adding a detailed model of the all-electric power take-off (PTO) system, consisting of a permanent magnet synchronous generator, inverter and DC-link. Time domain simulations are performed to evaluate the PTO capabilities of the modeled WEC. However, when tuned towards reactive control, the generator losses become large, giving a very low overall system efficiency. Optimal control with respect to electrical output power is found to occur with low added mass, and when compared to pure passive loading, a 1% increase in annual energy production is estimated. The main factor reducing the effect of reactive control is found to be the minimum load-force constraint of the device. These results suggest that the Lifesaver has limited potential for increased production by reactive control. This analysis is nevertheless valuable, as it demonstrates how a wave-to-wire model can be used for investigation of PTO potential, annual energy production estimations and evaluations of different control techniques for a given WEC device.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available