4.5 Article

Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study

Journal

ENERGIES
Volume 5, Issue 12, Pages 5340-5362

Publisher

MDPI
DOI: 10.3390/en5125340

Keywords

atmospheric turbulence; large-eddy simulation; turbulence intensity; turbulence kinetic energy; wind-turbine wakes; wind shear

Categories

Funding

  1. Swiss National Science Foundation [200021_132122]
  2. National Science Foundation [EAR-0537856, ATM-0854766]
  3. Swiss National Supercomputing Centre [s306]
  4. Swiss National Science Foundation (SNF) [200021_132122] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

A numerical study of atmospheric turbulence effects on wind-turbine wakes is presented. Large-eddy simulations of neutrally-stratified atmospheric boundary layer flows through stand-alone wind turbines were performed over homogeneous flat surfaces with four different aerodynamic roughness lengths. Emphasis is placed on the structure and characteristics of turbine wakes in the cases where the incident flows to the turbine have the same mean velocity at the hub height but different mean wind shears and turbulence intensity levels. The simulation results show that the different turbulence intensity levels of the incoming flow lead to considerable influence on the spatial distribution of the mean velocity deficit, turbulence intensity, and turbulent shear stress in the wake region. In particular, when the turbulence intensity level of the incoming flow is higher, the turbine-induced wake (velocity deficit) recovers faster, and the locations of the maximum turbulence intensity and turbulent stress are closer to the turbine. A detailed analysis of the turbulence kinetic energy budget in the wakes reveals also an important effect of the incoming flow turbulence level on the magnitude and spatial distribution of the shear production and transport terms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available