4.8 Article

A General Route toward Complete Room Temperature Processing of Printed and High Performance Oxide Electronics

Journal

ACS NANO
Volume 9, Issue 3, Pages 3075-3083

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nn507326z

Keywords

printed electronics; field-effect transistor; oxide electronics; room-temperature processing; chemical curing

Funding

  1. Helmholtz Association in the form of Helmholtz Virtual Institute at Karlsruhe Institute of Technology (KIT) [VI-530]

Ask authors/readers for more resources

Critical prerequisites for solution-processed/printed field-effect transistors (FETs) and logics are excellent electrical performance including high charge carrier mobility, reliability, high environmental stability and low/preferably room temperature processing. Oxide semiconductors can often fulfill all the above criteria, sometimes even with better promise than their organic counterparts, except for their high process temperature requirement. The need for high annealing/curing temperatures renders oxide FETs rather incompatible to inexpensive, flexible substrates, which are commonly used for high-throughput and roll-to-roll additive manufacturing techniques, such as printing. To overcome this serious limitation, here we demonstrate an alternative approach that enables completely room-temperature processing of printed oxide FETs with device mobility as large as 12.5 cm(2)/(V s). The key aspect of the present concept is a chemically controlled curing process of the printed nanoparticle ink that provides surprisingly dense thin films and excellent interparticle electrical contacts. In order to demonstrate the versatility of this approach, both n-type (In2O3) and p-type (Cu2O) oxide semiconductor nanoparticle dispersions are prepared to fabricate, inkjet printed and completely room temperature processed, all-oxide complementary metal oxide semiconductor (CMOS) invertors that can display significant signal gain (similar to 18) at a supply voltage of only 1.5 V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available