4.5 Article

Fibroblast Growth Factor-2 Isoform (Low Molecular Weight/18 kDa) Overexpression in Preosteoblast Cells Promotes Bone Regeneration in Critical Size Calvarial Defects in Male Mice

Journal

ENDOCRINOLOGY
Volume 155, Issue 3, Pages 965-974

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1210/en.2013-1919

Keywords

-

Funding

  1. National Institutes of Health/National Institute on Aging [5R01AG021189-10]
  2. ITI Foundation (Basel, Switzerland) [5412007]
  3. ITI Foundation scholarships

Ask authors/readers for more resources

Repair of bone defects remains a significant clinical problem. Bone morphogenetic protein 2 (BMP2) is US Food and Drug Administration-approved for fracture healing but is expensive and has associated morbidity. Studies have shown that targeted overexpression of the 18-kDa low-molecular- weight fibroblast growth factor 2 isoform (LMW) by the osteoblastic lineage of transgenic mice increased bone mass. This study tested the hypotheses that overexpression of LMW would directly enhance healing of a critical size calvarial bone defect in mice and that this overexpression would have a synergistic effect with low-dose administration of BMP2 on critical size calvarial bone defect healing. Bilateral calvarial defects were created in LMW transgenic male mice and control/ vector transgenic (Vector) male mice and scaffold with or without BMP2 was placed into the defects. New bone formation was assessed by VIVA-computed tomography of live animals over a 27-week period. Radiographic and computed tomography analysis revealed that at all time points, healing of the defect was enhanced in LMW mice compared with that in Vector mice. Although the very low concentration of BMP2 did not heal the defect in Vector mice, it resulted in complete healing of the defect in LMW mice. Histomorphometric and gene analysis revealed that targeted overexpression of LMW in osteoblast precursors resulted in enhanced calvarial defect healing due to increased osteoblast activity and increased canonical Wnt signaling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available