4.5 Article

Notch Signaling Plays a Critical Role in Motility and Differentiation of Human First-Trimester Cytotrophoblasts

Journal

ENDOCRINOLOGY
Volume 155, Issue 1, Pages 263-274

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1210/en.2013-1455

Keywords

-

Funding

  1. Austrian Science Funds, Vienna, Austria [P-22687-B13, P-25187-B13]
  2. Action Medical Research Grant, United Kingom [SP4577]
  3. Austrian Science Fund (FWF) [P25187] Funding Source: Austrian Science Fund (FWF)
  4. Austrian Science Fund (FWF) [P 22687, P 25187] Funding Source: researchfish

Ask authors/readers for more resources

Failures in human extravillous trophoblast (EVT) development could be involved in the pathogenesis of pregnancy diseases. However, the underlying mechanisms have been poorly characterized. Here, we provide evidence that Notch signaling could represent a key regulatory pathway controlling trophoblast proliferation, motility, and differentiation. Immunofluorescence of first-trimester placental tissues revealed expression of Notch receptors (Notch2 and Notch3) and membrane-anchored ligands (delta-like ligand [DLL] 1 and -4 and Jagged [JAG] 1 and -2) in villous cytotrophoblasts (vCTBs), cell column trophoblasts (CCTs), and EVTs. Notch4 and Notch1 were exclusively expressed in vCTBs and in CCTs, respectively. Both proteins decreased in Western blot analyses of first-trimester, primary cytotrophoblasts (CTBs) differentiating on fibronectin. Luciferase reporter analyses suggested basal, canonical Notch activity in SGHPL-5 cells and primary cells that was increased upon seeding on DLL4-coated dishes and diminished in the presence of the Notch/gamma-secretase inhibitors N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT) or L-685,458. Bromodeoxyuridine labeling, cyclin D1 mRNA expression, and cell counting indicated that chemical inhibition of Notch signaling elevated proliferation in the different primary trophoblast model systems. Notch inhibition also increased motility of SGHPL-5 cells through uncoated and fibronectin-coated Transwells, motility of primary CTBs, as well as migration in villous explant cultures on collagen I. Accordingly, small interfering RNA-mediated gene silencing of Notch1 also elevated SGHPL-5 cell migration. In contrast, motility of primary cultures and SGHPL-5 cells was diminished in the presence of DLL4. Moreover, DAPT increased markers of differentiated EVT, ie, human leukocyte antigen G1, integrin alpha 5, and T-cell factor 4, whereas DLL4 provoked the opposite. In summary, the data suggest that canonical Notch signaling impairs motility and differentiation of first-trimester CTBs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available