4.5 Article

CYP2J3 Gene Delivery Up-Regulated Adiponectin Expression via Reduced Endoplasmic Reticulum Stress in Adipocytes

Journal

ENDOCRINOLOGY
Volume 154, Issue 5, Pages 1743-1753

Publisher

ENDOCRINE SOC
DOI: 10.1210/en.2012-2012

Keywords

-

Funding

  1. Nature Science Foundation Committee Projects [31130031, 30930039, 81100085]
  2. National 973 Project of China [2012CB518004]

Ask authors/readers for more resources

Ample evidences demonstrate that cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid into epoxyeicosatrienoic acids (EETs), which play crucial and diverse roles in cardiovascular homeostasis. We and others have identified that EETs exert a beneficial role on insulin resistance and diabetes. This study investigated the effects of CYP2J3 epoxygenase gene delivery on adiponectin expression in rats treated with high-fat (HF) diet. CYP2J3 gene delivery in vivo increased EET generation, enhanced adiponectin expression and secretion and accompanied by activation of adiponectin downstream signaling, and decreased insulin resistance as determined by plasma insulin levels, insulin resistance index and glucose tolerance test, as well as phosphorylation of protein kinase B in both liver and muscle. Furthermore, CYP2J3 overexpression prevented HF diet-induced endoplasmic reticulum (ER) stress in adipose tissue of rats. Also, CYP2J3 gene transfection and exogenous administration of EETs inhibited thapsigargin-induced ER stress with increased adiponectin expression and secretion in differentiated 3T3-L1 adipocytes. Thus, CYP2J3 gene delivery up-regulated adiponectin expression and excretion in adipose tissue of rats treated with HF diet through inhibition of ER stress, which can decrease adiponectin expression. These results further highlight the beneficial roles of the CYP epoxygenase 2J3 and its metabolites EETs on adiponectin expression and secretion. (Endocrinology 154: 1743-1753, 2013)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available