4.5 Article

Palladin Is a Regulator of Actin Filament Bundles at the Ectoplasmic Specialization in Adult Rat Testes

Journal

ENDOCRINOLOGY
Volume 154, Issue 5, Pages 1907-1920

Publisher

ENDOCRINE SOC
DOI: 10.1210/en.2012-2269

Keywords

-

Funding

  1. National Institutes of Health (Eunice Kennedy Shriver National Institute of Child Health and Human Development) [R01 HD056034, U54 HD029990]

Ask authors/readers for more resources

In rat testes, the ectoplasmic specialization (ES) at the Sertoli-Sertoli and Sertoli-spermatid interface known as the basal ES at the blood-testis barrier and the apical ES in the adluminal compartment, respectively, is a testis-specific adherens junction. The remarkable ultrastructural feature of the ES is the actin filament bundles that sandwiched in between the cisternae of endoplasmic reticulum and apposing plasma membranes. Although these actin filament bundles undergo extensive reorganization to switch between their bundled and debundled state to facilitate blood-testis barrier restructuring and spermatid adhesion/transport, the regulatory molecules underlying these events remain unknown. Herein we report findings of an actin filament cross-linking/bundling protein palladin, which displayed restrictive spatiotemporal expression at the apical and the basal ES during the epithelial cycle. Palladin structurally interacted and colocalized with Eps8 (epidermal growth factor receptor pathway substrate 8, an actin barbed end capping and bundling protein) and Arp3 (actin related protein 3, which together with Arp2 form the Arp2/3 complex to induce branched actin nucleation, converting bundled actin filaments to an unbundled/branched network), illustrating its role in regulating actin filament bundle dynamics at the ES. A knockdown of palladin in Sertoli cells in vitro with an established tight junction (TJ)-permeability barrier was found to disrupt the TJ function, which was associated with a disorganization of actin filaments that affected protein distribution at the TJ. Its knockdown in vivo also perturbed F-actin organization that led to a loss of spermatid polarity and adhesion, causing defects in spermatid transport and spermiation. In summary, palladin is an actin filament regulator at the ES. (Endocrinology 154: 1907-1920, 2013)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available