4.5 Article

STX, a Novel Nonsteroidal Estrogenic Compound, Induces Rapid Action in Primate GnRH Neuronal Calcium Dynamics and Peptide Release

Journal

ENDOCRINOLOGY
Volume 152, Issue 8, Pages 3182-3191

Publisher

ENDOCRINE SOC
DOI: 10.1210/en.2011-0097

Keywords

-

Funding

  1. National Institutes of Health (NIH) [R01HD15433, R01HD11355, R01NS 43330, P51RR000167, RR15459, RR020141]

Ask authors/readers for more resources

Previously, we reported that 1 nM 17 beta-estradiol (E(2)) induces a rapid action, which is, in part, mediated through the G protein-coupled receptor GPR30 in primate GnRH neurons. Because it has been reported that the diphenylacrylamide compound, STX, causes estrogenic action in the mouse and guinea pig hypothalamus, the present study examined effects of STX in primate GnRH neurons and whether there is an action independent of GPR30. Results are summarized as follows. STX (10 nM) exposure increased 1) the oscillation frequency of intracellular calcium concentration ([Ca(2+)](i)), 2) the percentage of cells stimulated, and 3) the synchronization frequency of [Ca(2+)](i) oscillations. STX (10-100 nM) also stimulated GnRH release. The effects of STX on both [Ca(2+)](i) oscillations andGnRHrelease were similar to those caused by E(2) (1 nM), although with less magnitude. STX (10 nM)-induced changes in [Ca(2+)](i) oscillations were not altered by GPR30 small interfering RNA transfection, indicating that STX-sensitive receptors differ from GPR30. Finally, a higher dose of E(2) (10 nM) induced a larger change in [Ca(2+)](i) oscillations than that with a smaller dose of E(2) (1 nM), and the effects of 10 nM E(2) were reduced but not completely blocked by GPR30 small interfering RNA transfection, indicating that the effects of 10 nM E(2) in primate GnRH neurons are mediated by multiple membrane receptors, including GPR30 and STX-sensitive receptors. Collectively, the rapid action of E(2) mediated through GPR30 differs from that mediated through STX-sensitive receptors. The molecular structure of the STX-sensitive receptor remains to be identified. (Endocrinology 152: 3182-3191, 2011)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available