4.5 Article

The Secretogranin II-Derived Peptide Secretoneurin Stimulates Luteinizing Hormone Secretion from Gonadotrophs

Journal

ENDOCRINOLOGY
Volume 150, Issue 5, Pages 2273-2282

Publisher

ENDOCRINE SOC
DOI: 10.1210/en.2008-1060

Keywords

-

Funding

  1. National Sciences and Engineering Research Council Canada
  2. Hong Kong Research Grants Council (RGC)
  3. University of Ottawa Interfaculty Research Program

Ask authors/readers for more resources

Secretoneurin (SN) is a 33- to 34-amino acid neuropeptide derived from secretogranin-II, a member of the chromogranin family. We previously synthesized a putative goldfish (gf) SN and demonstrated its ability to stimulate LH release in vivo. However, it was not known whether goldfish actually produced the free SN peptide or whether SN directly stimulates LH release from isolated pituitary cells. Using a combination of reverse-phase HPLC and mass spectrometry analysis, we isolated for the first time a 34-amino acid free gfSN peptide from the whole brain. Moreover, Western blot analysis indicated the existence of this peptide in goldfish pituitary. Immunocytochemical localization studies revealed the presence of SN immunoreactivity in prolactin cells of rostral pars distalis of the anterior pituitary. Additionally, we found that magnocellular cells of the goldfish preoptic region are highly immunoreactive for SN. These neurons send heavily labeled projections that pass through the pituitary stalk and innervate the neurointermediate and anterior lobes. In static 12-h incubation of dispersed pituitary cells, application of SN antiserum reduced LH levels, whereas 1 and 10 nM gfSN, respectively, induced 2.5-fold (P < 0.001) and 1.9-fold (P < 0.01) increments of LH release into the medium, increases similar to those elicited by 100 nM concentrations of GnRH. Like GnRH, gfSN elevated intracellular Ca2+ in identified gonadotrophs. Whereas we do not yet know the relative contribution of neural SN or pituitary SN to LH release, we propose that SN could act as a neuroendocrine and/or paracrine factor to regulate LH release from the anterior pituitary. (Endocrinology 150: 2273-2282, 2009)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available