4.3 Article

The biological pump in the Costa Rica Dome: an open-ocean upwelling system with high new production and low export

Journal

JOURNAL OF PLANKTON RESEARCH
Volume 38, Issue 2, Pages 348-365

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/plankt/fbv097

Keywords

biogeochemistry; Eastern Tropical Pacific; plankton; carbon flux; nutrients

Funding

  1. U.S. National Science Foundation [OCE-0826626]
  2. National Aeronautics and Space Administration

Ask authors/readers for more resources

The Costa Rica Dome is a picophytoplankton-dominated, open-ocean upwelling system in the Eastern Tropical Pacific that overlies the ocean's largest oxygen minimum zone. To investigate the efficiency of the biological pump in this unique area, we used shallow (90-150 m) drifting sediment traps and Th-234: U-238 deficiency measurements to determine export fluxes of carbon, nitrogen and phosphorus in sinking particles. Simultaneous measurements of nitrate uptake and shallow water nitrification allowed us to assess the equilibrium balance of new and export production over a monthly timescale. While f-ratios (new: total production) were reasonably high (0.36+/-0.12, mean+/-standard deviation), export efficiencies were considerably lower. Sediment traps suggested e-ratios (export/C-14-primary production) at 90-100 m ranging from 0.053 to 0.067. ThE-ratios (Th-234 disequilibrium-derived export) ranged from 0.038 to 0.088. C: N and N: P stoichiometries of sinking material were both greater than canonical (Redfield) ratios or measured C: N of suspended particulates, and they increased with depth, suggesting that both nitrogen and phosphorus were preferentially remineralized from sinking particles. Our results are consistent with an ecosystem in which mesozooplankton play a major role in energy transfer to higher trophic levels but are relatively inefficient in mediating vertical carbon flux to depth, leading to an imbalance between new production and sinking flux.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available