4.3 Article

Phytoplankton growth and microzooplankton grazing dynamics across vertical environmental gradients determined by transplant in situ dilution experiments

Journal

JOURNAL OF PLANKTON RESEARCH
Volume 38, Issue 2, Pages 271-289

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/plankt/fbv074

Keywords

phytoplankton; community structure; growth and grazing dynamics; physical perturbation; Costa Rica Dome

Funding

  1. U.S. National Science Foundation [OCE-0826626]
  2. Ramon Areces Foundation

Ask authors/readers for more resources

The Costa Rica Dome (CRD) represents a classic case of the bloom-forming capacity of small phytoplankton. Unlike other upwelling systems, autotrophic biomass in the CRD is dominated by picocyanobacteria and small eukaryotes that outcompete larger diatoms and reach extremely high biomass levels. We investigated responses of the subsurface phytoplankton community of the CRD to changes associated with vertical displacement of water masses, coupling in situ transplanted dilution experiments with flow cytometry and epifluorescence microscopy to assess group-specific dynamics. Growth rates of Synechococcus (SYN) and photosynthetic picoeukaryotes (PEUK) were positively correlated with light (R-pearson_SYN = 0.602 and R-pearson_PEUK = 0.588, P<0.001). Growth rates of Prochlorococcus (PRO), likely affected by photoinhibition, were not light correlated (R-pearson_PRO = 0.101, P = 0.601). Overall, grazing and growth rates were closely coupled in all picophytoplankton groups (R-spearman_PRO = 0.572, R-spearman_SYN = 0.588, R-spearman_PEUK = 0.624), and net growth rates remained close to zero. Conversely, the abundance and biomass of larger phytoplankton, mainly diatoms, increased more than 10-fold in shallower transplant incubations indicating that, in addition to trace-metal chemistry, light also plays a significant role in controlling microphytoplankton populations in the CRD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available