4.8 Article

Nanoscale segregation of actin nucleation and elongation factors determines dendritic spine protrusion

Journal

EMBO JOURNAL
Volume 33, Issue 23, Pages 2745-2764

Publisher

WILEY
DOI: 10.15252/embj.201488837

Keywords

branched F-actin regulators; dendritic spine; postsynaptic density; single protein tracking; super-resolution microscopy

Funding

  1. French Ministry of Research
  2. CNRS
  3. ANR grant Nanomotility
  4. LabEx BRAIN
  5. Conseil Regional Aquitaine
  6. Fondation pour la Recherche Medicale
  7. ERC [232942 Nano-Dyn-Syn, 235552 Glutraf]
  8. Deutsche Forschungsgemeinschaft

Ask authors/readers for more resources

Actin dynamics drive morphological remodeling of neuronal dendritic spines and changes in synaptic transmission. Yet, the spatiotemporal coordination of actin regulators in spines is unknown. Using single protein tracking and super-resolution imaging, we revealed the nanoscale organization and dynamics of branched F-actin regulators in spines. Branched F-actin nucleation occurs at the PSD vicinity, while elongation occurs at the tip of finger-like protrusions. This spatial segregation differs from lamellipodia where both branched F-actin nucleation and elongation occur at protrusion tips. The PSD is a persistent confinement zone for IRSp53 and the WAVE complex, an activator of the Arp2/3 complex. In contrast, filament elongators like VASP and formin-like protein-2 move outwards from the PSD with protrusion tips. Accordingly, Arp2/3 complexes associated with F-actin are immobile and surround the PSD. Arp2/3 and Rac1 GTPase converge to the PSD, respectively, by cytosolic and free-diffusion on the membrane. Enhanced Rac1 activation and Shank3 over-expression, both associated with spine enlargement, induce delocalization of the WAVE complex from the PSD. Thus, the specific localization of branched F-actin regulators in spines might be reorganized during spine morphological remodeling often associated with synaptic plasticity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available