4.8 Article

Eps8 controls dendritic spine density and synaptic plasticity through its actin-capping activity

Journal

EMBO JOURNAL
Volume 32, Issue 12, Pages 1730-1744

Publisher

WILEY
DOI: 10.1038/emboj.2013.107

Keywords

actin-capping activity; activity-dependent plasticity; Eps8; learning and memory defects; spine morphogenesis

Funding

  1. European Union Seventh Framework Programme [HEALTH-F2-2009-241498]
  2. Telethon [GGP12115]
  3. PRIN

Ask authors/readers for more resources

Actin-based remodelling underlies spine structural changes occurring during synaptic plasticity, the process that constantly reshapes the circuitry of the adult brain in response to external stimuli, leading to learning and memory formation. A positive correlation exists between spine shape and synaptic strength and, consistently, abnormalities in spine number and morphology have been described in a number of neurological disorders. In the present study, we demonstrate that the actin-regulating protein, Eps8, is recruited to the spine head during chemically induced long-term potentiation in culture and that inhibition of its actin-capping activity impairs spine enlargement and plasticity. Accordingly, mice lacking Eps8 display immature spines, which are unable to undergo potentiation, and are impaired in cognitive functions. Additionally, we found that reduction in the levels of Eps8 occurs in brains of patients affected by autism compared to controls. Our data reveal the key role of Eps8 actin-capping activity in spine morphogenesis and plasticity and indicate that reductions in actin-capping proteins may characterize forms of intellectual disabilities associated with spine defects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available